High-Spin Molecules: Hexanuclear $\left[\mathrm{Mn}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}\left(\mathrm{Me}_{2} \mathrm{dbm}\right)_{6}\right]\left(\mathrm{Me}_{2} \mathrm{dbmH}=\right.$ 4,4'-Dimethyldibenzoylmethane) with a Near Tetrahedral $\left[\mathrm{Mn}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}\right]^{6+}$ Core and a $S=12$ Ground State

Guillem Aromí, ${ }^{1 a}$ Juan-Pablo Claude, ${ }^{\text {1a,c }}$ Michael J. Knapp, ${ }^{\text {1b }}$ John C. Huffman, ${ }^{\text {1a }}$ David N. Hendrickson,*, ${ }^{\text {b }}$ and George Christou*, la

Department of Chemistry and Molecular Structure Center, Indiana University Bloomington, Indiana 47405-4001
Department of Chemistry-0358
University of California at San Diego
La Jolla, California 92093-0358

Received November 24, 1997

An interesting sub-area of transition-metal cluster chemistry is the small but growing family of molecules that, in their ground states, have unusually large numbers of unpaired electrons. Molecular clusters with spin (S) values as high as double figures have been discovered, with the highest value to date being $S \approx$ $16 \frac{1}{2}$ for one of the clusters in a sample of cocrystallized Fe_{17} and Fe_{19} species, ${ }^{2}$ but examples with $S \geq 8$ are nevertheless very rare. ${ }^{3,4}$ The study of such molecules has shown that the high spin value is a result of the presence of (at least some) ferromagnetic exchange interactions between the metal ions and/ or spin frustration effects arising from the presence in certain M_{x} topologies of competing exchange interactions which prevent (frustrate) the preferred spin alignments that would otherwise normally yield low-spin species.

The study of high-spin molecules has taken on additional importance in recent years as it has been realized that a fairly large S value is a necessary (but not sufficient) property for molecules to exhibit the new magnetic phenomenon of singlemolecule magnetism, i.e., the ability of material composed of discrete, (magnetically) noninteracting molecules to be magnetized by an external magnetic field below a critical blocking temperature $\left(T_{\mathrm{B}}\right)$. ${ }^{3 \mathrm{a}, 5,6}$ The importance of a high S value in such nanoscale magnets has stimulated a search for new examples of species with this property. We herein report the preparation of a new hexanuclear $\mathrm{Mn}^{\text {III }}$ cluster with an aesthetically pleasing $\left[\mathrm{Mn}_{6} \mathrm{O}_{4}{ }^{-}\right.$

[^0]$\left.\mathrm{Cl}_{4}\right]^{6+}$ core and show that it possesses a $S=12$ ground state, one of the highest yet identified.

Treatment of $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{6}(\mathrm{py})_{2}\left(\mathrm{Me}_{2} \mathrm{dbm}\right)_{2}\right](\mathbf{1})\left(\mathrm{Me}_{2} \mathrm{dbmH}\right.$ $=4,4^{\prime}$-dimethyldibenzoylmethane), prepared as for the dbm analogue, ${ }^{7}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 6 equiv of $\mathrm{Me}_{3} \mathrm{SiCl}$ and 2 equiv of $\mathrm{Me}_{2} \mathrm{dbmH}$ gave a brown solution from which was isolated crude [$\left.\mathrm{MnCl}\left(\mathrm{Me}_{2} \mathrm{dbm}\right)_{2}\right]$ (2) on addition of $\mathrm{Et}_{2} \mathrm{O}$. Redissolution in $\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) followed by standing and slight concentration at room temperature over ~ 3 weeks gave black crystals of $\left[\mathrm{Mn}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}\left(\mathrm{Me}_{2} \mathrm{dbm}\right)_{6}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathbf{3} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, together with some white powder. The latter was removed by filtration and washing of the black crystals with EtOH. Complex $\mathbf{3}$ can also be obtained by dissolving purified $\mathbf{2}$ in $\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), and subsequent treatment as above, suggesting the formation of $\mathbf{3}$ to involve a slow hydrolysis of the mononuclear species. ${ }^{8}$ Nonoptimized yields up to 14% have been obtained to date. ${ }^{8}$

The structure ${ }^{9}$ of $\mathbf{3}$ (Figure 1) consists of a $\left(\mathrm{Mn}^{\mathrm{III}}\right)_{6}$ octahedron with four nonadjacent faces bridged by the $\mu_{3}-\mathrm{O}^{2-}$ ions and the other four faces by $\mu_{3}-\mathrm{Cl}^{-}$ions. Six-coordinate, approximately octahedral geometry at each metal is completed by a chelating $\mathrm{Me}_{2} \mathrm{dbm}$ group. The cluster has virtual T_{d} symmetry. As expected for high-spin, octahedral $\mathrm{Mn}^{\text {III }}$, there is a Jahn-Teller (JT) distortion, taking the form of an axial elongation of the two trans $\mathrm{Mn}-\mathrm{Cl}$ bonds, making them unusually long (2.618(3)$2.692(3) \AA)$. In contrast, the $\mathrm{Mn}-\mathrm{O}^{2-}(1.876(4)-1.899(5) \AA)$ and $\mathrm{Mn}-\mathrm{O}\left(\mathrm{Me}_{2} \mathrm{dbm}\right)(1.903(5)-1.925(5) \AA)$ bond lengths are as expected. As a result of (i) the long $\mathrm{Mn}-\mathrm{Cl}^{-}$versus short $\mathrm{Mn}-\mathrm{O}^{2-}$ bonds and (ii) the near trigonal planar geometry at the latter (sum-of-angles (soa) $\approx 349^{\circ}$) compared with marked trigonal pyramidal geometry at the former (soa $\approx 223^{\circ}$), the $\left[\mathrm{Mn}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}\right]^{6+}$ core is a near tetrahedron with a Cl ${ }^{-}$at each vertex, a Mn at the midpoint of each edge, and a O^{2-} bridging each face. Although many $\left[\mathrm{M}_{6}\left(\mu_{3}-\mathrm{X}\right)_{8}\right]$ face-capped metal octahedra are known, ${ }^{10}$ only a relative few contain two types of X group, e.g., the $\left[\mathrm{Ti}_{6} \mathrm{O}_{6} \mathrm{Cl}_{2}\right],{ }^{11}\left[\mathrm{Ti}_{6} \mathrm{Te}_{6} \mathrm{O}_{2}\right],{ }^{12}$ and $\left[\mathrm{Re}_{6} \mathrm{Y}_{x} \mathrm{Z}_{8-x}\right](x=5, \mathrm{Y}=\mathrm{S}$ or $\mathrm{Se}, \mathrm{Z}=\mathrm{Cl} ; x=6, \mathrm{Y}=\mathrm{S}, \mathrm{Z}=\mathrm{Cl})^{13}$ cores. Only the $\left[\mathrm{Ti}_{6}\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{O})_{4}\left(\mu_{3}-\mathrm{Cl}\right)_{4}\right]$ core of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}_{6}\right)_{6} \mathrm{Ti}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}\right]^{11}$ contains, like 3, four O^{2-} and $4 \mathrm{Cl}^{-}$bridges, but the structure does not approximate to a tetrahedron. $\left[\mathrm{Mn}^{\mathrm{II}}{ }_{6} \mathrm{X}_{8}\right]$ species have been unknown to date, although a $\left[\mathrm{Mn}_{6}\left(\mu_{3}-\mathrm{O}\right)_{4}\left(\mu_{3}-\mathrm{Cl}\right)_{4}\right]^{4+}$ unit as found in 3 but at the $2 \mathrm{Mn}^{\mathrm{II}}, 4 \mathrm{Mn}^{\mathrm{III}}$ level is also a recognizable fragment within the higher nuclearity cluster $\left[\mathrm{Mn}_{10} \mathrm{O}_{4} \mathrm{Cl}_{12}(\text { biphen })_{4}\right]^{4-}\left(\right.$ biphen $=2,2^{\prime}$ biphenoxide). ${ }^{14}$

[^1]

Figure 1. Labeled ORTEP plot and stereopair of $\left[\mathrm{Mn}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}\left(\mathrm{Me}_{2} \mathrm{dbm}\right)_{6}\right]$ (3). For clarity, only the ipso-carbon atom of each $\mathrm{C}_{6} \mathrm{H}_{4}-p$-Me ring is shown. Selected distances (\AA): $\mathrm{Mn} 1-\mathrm{Mn} 2,3.195(2)$; $\mathrm{Mn} 1-\mathrm{Mn} 3,3.207-$ (2); Mn1-Mn4, 3.203(2); Mn1-Mn6, 3.193(2); Mn2-Mn3, 3.199(2); Mn2-Mn5, 3.210(2); Mn2-Mn6, 3.219(2); Mn3-Mn4, 3.204(2); Mn3Mn5, 3.189(2); Mn4-Mn5, 3.205(2); Mn4-Mn6, 3.199(2); Mn5-Mn6, 3.221; Mn1-Mn5, 4.526(2); Mn2-Mn4, 4.534(2); Mn3-Mn6, 4.532(2).

Variable-temperature, magnetic susceptibility data were collected on powdered $3 \cdot 0.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the range of $2.00-320 \mathrm{~K}$. The $\mu_{\text {eff }} / \mu_{\mathrm{B}}\left(\chi_{\mathrm{m}} T / \mathrm{cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}\right)$ values slowly increase from 16.01 (32.04) at 320 K to a maximum of 24.27 (73.63) at 30.0 K and then decrease to 13.69 (23.43) at 2.00 K . The maxima may be compared with 24.99 (78.0) for a $S=12$ system with $g=2.00$. This ground-state value was confirmed by fitting of reduced magnetization $\left(M / N \mu_{\mathrm{B}}\right)$ vs H / T data collected in the $0.500-50.0$ kG range and temperatures down to 2.00 K (Figure 2). The $M / N \mu_{\mathrm{B}}$ value saturates at 23.02 , near to the value of 24 expected for $S=12$ if $g=2.0$. The various isofield lines are virtually superimposed, indicating essentially no zero field splitting (ZFS) within the ground state. The data were fit (solid line in Figure 2) to a Brillouin function for an isolated $S=12$ state with $g=$ 1.936 and $D=0.0 \mathrm{~cm}^{-1}$, confirming a high-spin ground state with little or no magnetic anisotropy, as anticipated from the

[^2] D.; Hegetschweiler, K. Inorg. Chem. 1994, 33, 1559.

Figure 2. Plot of reduced magnetization $\left(M / N \mu_{\mathrm{B}}\right)$ vs H / T for $\left[\mathrm{Mn}_{6} \mathrm{O}_{4-}\right.$ $\left.\mathrm{Cl}_{4}\left(\mathrm{Me}_{2} \mathrm{dbm}\right)_{6}\right] \cdot 0.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, collected in the $2.00-15.0 \mathrm{~K}$ and $0.50-50$ kG ranges. The solid line is a fit of the data to the Brillouin function for a $S=12$ complex with $g=1.936$.
virtual T_{d} symmetry. To obtain the pairwise exchange parameters, the $\mu_{\text {eff }}$ versus T data were fit to the expression derived for a $\left(\mathrm{Mn}^{\mathrm{III}}\right)_{6}$ octahedron using the Kambe vector coupling method, ${ }^{15}$ the van Vleck equation, and exchange parameters $J_{\text {cis }}$ and $J_{\text {trans }}$. The spin Hamiltonian is given in eq 1

$$
\begin{array}{r}
\hat{\mathrm{H}}=-2 J_{\text {cis }}\left(\hat{\mathrm{S}}_{1} \hat{\mathrm{~S}}_{2}+\hat{\mathrm{S}}_{1} \hat{\mathrm{~S}}_{3}+\hat{\mathrm{S}}_{1} \hat{\mathrm{~S}}_{4}+\hat{\mathrm{S}}_{1} \hat{\mathrm{~S}}_{6}+\hat{\mathrm{S}}_{2} \hat{\mathrm{~S}}_{3}+\hat{\mathrm{S}}_{2} \hat{\mathrm{~S}}_{5}+\right. \\
\left.\hat{\mathrm{S}}_{2} \hat{\mathrm{~S}}_{6}+\hat{\mathrm{S}}_{3} \hat{\mathrm{~S}}_{4}+\hat{\mathrm{S}}_{3} \hat{\mathrm{~S}}_{5}+\hat{\mathrm{S}}_{4} \hat{\mathrm{~S}}_{5}+\hat{\mathrm{S}}_{4} \hat{\mathrm{~S}}_{6}+\hat{\mathrm{S}}_{5} \hat{\mathrm{~S}}_{6}\right)- \\
2 J_{\text {trans }}\left(\hat{\mathrm{S}}_{1} \mathrm{~S}_{5}+\hat{\mathrm{S}}_{2} \hat{\mathrm{~S}}_{4}+\hat{\mathrm{S}}_{3} \hat{\mathrm{~S}}_{6}\right) \tag{1}
\end{array}
$$

(where S_{i} is the spin of metal Mn_{i}), which can be transformed into the equivalent form in eq 2 by the substitutions $\hat{\mathrm{S}}_{\mathrm{A}}=\hat{\mathrm{S}}_{1}+$ $\hat{\mathrm{S}}_{5}, \hat{\mathrm{~S}}_{\mathrm{B}}=\hat{\mathrm{S}}_{2}+\hat{\mathrm{S}}_{4}, \hat{\mathrm{~S}}_{\mathrm{C}}=\hat{\mathrm{S}}_{3}+\hat{\mathrm{S}}_{6}$, and $\hat{\mathrm{S}}_{\mathrm{T}}=\hat{\mathrm{S}}_{\mathrm{A}}+\hat{\mathrm{S}}_{\mathrm{B}}+\mathrm{S}_{\mathrm{C}}$, where $\hat{\mathrm{S}}_{\mathrm{T}}$ is the resultant spin of the complete molecule. The energies,

$$
\begin{array}{r}
\hat{\mathrm{H}}=-J_{c i s}\left(\hat{\mathrm{~S}}_{\mathrm{T}}^{2}-\hat{\mathrm{S}}_{\mathrm{A}}^{2}-\hat{\mathrm{S}}_{\mathrm{B}}^{2}-\hat{\mathrm{S}}_{\mathrm{C}}^{2}\right)-J_{\text {trann }}\left(\hat{\mathrm{S}}_{\mathrm{A}}^{2}+\hat{\mathrm{S}}_{\mathrm{B}}^{2}+\right. \\
\left.\hat{\mathrm{S}}_{\mathrm{C}}^{2}-\hat{\mathrm{S}}_{1}^{2}-\hat{\mathrm{S}}_{2}^{2}-\hat{\mathrm{S}}_{3}^{2}-\hat{\mathrm{S}}_{4}^{2}-\hat{\mathrm{S}}_{5}^{2}-\hat{\mathrm{S}}_{6}^{2}\right) \tag{2}
\end{array}
$$

$E\left(\mathrm{~S}_{\mathrm{T}}\right)$, of each S_{T} are given by eq 3 , where constant terms have been omitted. An excellent fit was obtained with $J_{c i s}=+8.6$

$$
\begin{array}{r}
E\left(\mathrm{~S}_{\mathrm{T}}\right)=-J_{\text {cis }}\left[\mathrm{S}_{\mathrm{T}}\left(\mathrm{~S}_{\mathrm{T}}+1\right)-\mathrm{S}_{\mathrm{A}}\left(\mathrm{~S}_{\mathrm{A}}+1\right)-\mathrm{S}_{\mathrm{B}}\left(\mathrm{~S}_{\mathrm{B}}+1\right)-\right. \\
\left.\mathrm{S}_{\mathrm{C}}\left(\mathrm{~S}_{\mathrm{C}}+1\right)\right]-J_{\text {trans }}\left[\mathrm{S}_{\mathrm{A}}\left(\mathrm{~S}_{\mathrm{A}}+1\right)+\mathrm{S}_{\mathrm{B}}\left(\mathrm{~S}_{\mathrm{B}}+1\right)+\right. \\
\left.\mathrm{S}_{\mathrm{C}}\left(\mathrm{~S}_{\mathrm{C}}+1\right)\right] \tag{3}
\end{array}
$$

$\mathrm{cm}^{-1}, J_{\text {trans }}=0 \mathrm{~cm}^{-1}$, and $g=1.965$ with TIP held constant at $1200 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$. These J values indicate a well-isolated $S=12$ ground state separated by $138 \mathrm{~cm}^{-1}$ from the first excited state.

The above results establish $\mathbf{3}$ as a new member of the family of high-spin molecules and represent the first time that a discrete $\left(\mathrm{Mn}^{\text {III }}\right)_{6}$ octahedron has been prepared. We believe it to be a prototype of a large new family of related complexes, and attempts to prepare the Br^{-}and other analogues are currently in progress.

Acknowledgment. This work was funded by National Science Foundation grants to G.C. and D.N.H.

Supporting Information Available: Crystallographic data collection and refinement details and listings of atomic coordinates and thermal parameters for $\mathbf{3} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (21 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA973996V

[^0]: (1) (a) Indiana University. (b) University of California at San Diego. (c) Present address: Department of Chemistry, University of Alabama at Birmingham.
 (2) Powell, A. K.; Heath, S. L.; Gatteschi, D.; Pardi, L.; Sessoli, R.; Spina, G.; Del Giallo, F.; Pieralli, F. J. Am. Chem. Soc. 1995, 117, 2491.
 (3) (a) Eppley, H. J.; Tsai, H.-L.; de Vries, N.; Folting, K.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1995, 117, 301. (b) Tsai, H.-L.; Wang, S.; Folting, K.; Streib, W. E.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1995, 117, 2503. (c) Eppley, H. J.; Wang, S.; Tsai, H.-L.; Aubin, S. M.; Folting, K.; Streib, W. E.; Hendrickson, D. N.; Christou, G. Mol. Cryst. Liq. Cryst. 1995, 274, 159.
 (4) (a) Scuiller, A.; Mallah, T.; Verdaguer, M.; Nivorozkhin, A.; Tholence, J.-L.; Veillet, P. New J. Chem. 1996, 20, 1. (b) Delfs, C. D.; Gatteschi, D.; Pardi, L.; Sessoli, R.; Wieghardt, K.; Hanke, D. Inorg. Chem. 1993, 32, 3099. (c) Caneschi, A.; Gatteschi, D.; Laugier, J.; Rey, P.; Sessoli, R.; Zanchini, C. J. Am. Chem. Soc. 1988, 110, 2795. (d) Goldberg, D. P.; Caneschi, A.; Delfs, C. D.; Sessoli, R.; Lippard, S. J. J. Am. Chem. Soc. 1995, 117, 5789. (e) Blake, A. J.; Grant, C. M.; Parsons, S.; Rawson, J. M.; Winpenny, R. E. P. J. Chem. Soc., Chem. Commun. 1994, 2363. (f) Bolcar, M. A.; Aubin, S. M. J.; Folting, K.; Hendrickson, D. N.; Christou, G. J. Chem. Soc., Chem. Commun. 1997, 1485 . (g) Benelli, C.; Parsons, S.; Solan, G. A.; Winpenny, R. E. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1825
 (5) (a) Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem Soc. 1993, 115, 1804. (b) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.
 (6) Aubin, S. M. J.; Wemple, M. W.; Adams, D. M.; Tsai, H.-L.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1996, 118, 7746.

[^1]: (7) Wang, S.; Folting, K.; Streib, W. E.; Schmitt, E. A.; McCusker, J. K.; Hendrickson, D. N.; Christou, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 305.
 (8) The reaction is more complicated than this statement suggests, with $\left[\mathrm{Mn}\left(\mathrm{Me}_{2} \mathrm{dbm}\right)_{3}\right]$ identified in the filtrate; the isolation of pure $\mathbf{3}$ is undoubtedly due to its low solubility in this solvent mixture. Isolated solid is soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3}. ${ }^{1} \mathrm{H}$ NMR spectra in these solvents suggest the structure is retained on dissolution.
 (9) Dried solid analyzed as $\mathbf{3} \cdot 0.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Anal. Calcd (found) for $\mathrm{C}_{102.4}{ }^{-}$ $\mathrm{H}_{90.8} \mathrm{O}_{16} \mathrm{Cl}_{4.8} \mathrm{Mn}_{6}: \mathrm{C}, 59.21$ (59.28); $\mathrm{H}, 4.49$ (4.41). Crystal data for 3•3 $\mathrm{CH}_{2}-$ Cl_{2} : monoclinic; $P 2_{1} / c ; a=17.172(2) \AA, b=18.302(2) \AA, c=34.534(4)$ $\AA ; \beta=100.36(1)^{\circ} ; Z=4 ; V=10677 \AA^{3} ; d_{\text {calcd }}=1.430 \mathrm{~g} \mathrm{~cm}^{-3} ; T=-171$ ${ }^{\circ} \mathrm{C}$. The structure was solved using MULTAN and refined on F to $R\left(R_{\mathrm{w}}\right)=$ 5.80 (5.73) using 9989 unique reflections with $F>2.33 \sigma(F)$. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were included as fixed-atom contributors at calculated positions, except for the disordered $\mathrm{CH}_{2}-$ Cl_{2} molecules. Electronic spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\max } / \mathrm{nm}\left(\epsilon_{\mathrm{m}} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$: 456 (6380), 486 (5000), 540 (2720), 5841930.
 (10) Lee, S. L.; Holm, R. H. Angew. Chem., Int. Ed. Engl. 1990, 29, 840 and references therein.
 (11) (a) Roth, A.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1986, 108, 6823. (b) Carofiglio, T.; Floriani, C.; Roth, A.; Sgamellotti, A.; Rosi, M.; Chiesi-Villa, A.; Rizzoli, C. J. Organomet. Chem. 1995, 488, 141.
 (12) Gindelberger, D. E. Acta Crystallogr. Sect. C. 1996, 52, 2493.
 (13) Dolbecq, A.; Boubekeur, K.; Batail, P.; Canadell, E.; Auban-Senzier, P.; Coulon, C.; Lerstrup, K.; Bechgaard, K. J. Mater. Chem. 1995, 5, 1707.
 (14) Goldberg, D. P.; Caneschi, A.; Lippard, S. J. J. Am. Chem. Soc. 1993, 115, 9299.

[^2]: (15) (a) Kambe, K. J. Phys. Soc. Jpn. 1950, 5, 48. (b) Cornia, A.; Gatteschi,

